P1290 欧几里德的游戏
题目描述
欧几里德的两个后代Stan和Ollie正在玩一种数字游戏,这个游戏是他们的祖先欧几里德发明的。给定两个正整数M和N,从Stan开始,从其中较大的一个数,减去较小的数的正整数倍,当然,得到的数不能小于0。然后是Ollie,对刚才得到的数,和M,N中较小的那个数,再进行同样的操作……直到一个人得到了0,他就取得了胜利。下面是他们用(25,7)两个数游戏的过程:
Start:25 7
Stan:11 7
Ollie:4 7
Stan:4 3
Ollie:1 3
Stan:1 0
Stan赢得了游戏的胜利。
现在,假设他们完美地操作,谁会取得胜利呢?
输入输出格式
输入格式:
第一行为测试数据的组数C。下面有C行,每行为一组数据,包含两个正整数M, N。(M, N不超过长整型。)
输出格式:
对每组输入数据输出一行,如果Stan胜利,则输出“Stan wins”;否则输出“Ollie wins”
输入输出样例
输入样例#1:
225 724 15
输出样例#1:
Stan winsOllie wins
1、设m,n为输入数据且m>n,第一个满足条件m-n>n的步骤所对应的人为胜利者
2、m%n==0时的步骤所对应的人为胜利者。
#include#include #include #include #include using namespace std;int n,x,y,ans;int read(){ int x=0,f=1; char ch=getchar(); while(ch<'0'||ch>'9'){ if(ch=='-')f=-1; ch=getchar();} while(ch>='0'&&ch<='9'){x=x*10+ch-'0'; ch=getchar();} return x*f;}void f(int x,int y){ while(1) { if(x>y) swap(x,y); if(y%x==0) break; if(y-x>x) break; y-=x; ans++; }}int main(){ n=read(); while(n--) { ans=0; x=read(),y=read(); f(x,y); if(ans%2==0) printf("Stan wins\n"); else printf("Ollie wins\n"); } return 0;}